现如今docker如此受人追捧,主要是因为它的轻量化、可以快速部署以及资源的利用。但是一个docker images质量的好与坏,主要取决于Dockerfile编写的质量。同样功能的镜像,但是不同的Dockerfile build出来的镜像大小是不一样的,这是因为docker是由一层一层的只读层累积起来的,而这每一层就是Dockerfile中的每一条指令,所以Docker image的大小完全取决于Dockerfile中的每条指令生成的中间层的大小,
下面我们来举一个小例子来详细说明dockerimage的形成。
我们有一个Dockerfile:
FROM Ubuntu:14.04 ADD run.sh / VOLUME /data CMD [“./run.sh”]
这个简单的Dockerfile主要做的事情是:基于Ubuntu:14.04系统将run.sh放在根目录下,设置卷挂载点,然后在image启动的时候run脚本run.sh。
下图就是形成的docker image:
很明显,由图我们可以看到,四条指令分别形成四个层,假设Ubuntu:14.04是150MB,run.sh是1MB的话,那么FROM Ubuntu:14.04层的大小就是150MB,ADD run.sh /层的大小即为1MB,而VOLUME /data层和CMD [“./run.sh”]由于没有加入文件等数据,也没有在系统中生成数据,所以该层的大小为0。
所以整个image的大小就是151MB。在知道了docker image生成的原理之后,下面我们就来聊一下docker镜像的优化与压缩。
需要说明的一点就是:层数的多少在某些情况下是不会决定image的大小的,只有当Dockerfile中出现:
RUN yum install ***
RUN yum uninstall ***
的时候镜像是可以压缩优化的,因为上面这两句是安装一个工具,然后卸载掉,正常情况下我们感觉这样一安装一卸载大小就为0了,但是在docker image中不是这样的,RUN yum uninstall ***这一层只能是令上一层不可见,但是上一层的大小是不会变化的,所以,如果想达到0的效果,我们就需要将这两层压缩成一层,也就是这样写:
RUN yum install *** && \
yumuninstall ***
这样就会达到压缩镜像的效果。
所以,压缩镜像主要有两点:
1、选择一个较小的原镜像,也就是FROM后面的那个镜像尽量要小。
2、根据实际情况对Dockerfile中的层进行合并,具体情况就是如上述所说的情况,要知道并不是随便合并层就会达到效果的。
补充知识:如何将anaconda+jupyter build成docker镜像
最近由于业务的需求,要build一个jupyter的image来提供服务,因为docker的轻量化可以很方便的迁移。
下面来介绍一下我所做的操作,以及我踩的坑:
首先来安装anaconda,有python2和3版本的,版本不同但是build的过程是一样的,有两种方式,第一种,你可以通过Dockerfile的方式来build image,但是在运行Anaconda2-5.0.1-Linux-x86_64.sh脚本的时候无法实现交互,所以,我才用了docker commit的方式来执行,但是事实证明也可以通过Dockerfile的方式来build,您只需要在本机上先运行了Anaconda2-5.0.1-Linux-x86_64.sh的脚本,并将生成的文件夹就是anaconda2 ADD到image中相应的位置,并且修改环境变量,将PATH加进去即可。
下面以python2为例来说:
1. 从anaconda官网上下载运行脚本Anaconda2-5.0.1-Linux-x86_64.sh,其中在下载的时候要注意你的系统的是32位还是64位。
2. 将脚本scp到基础镜像中,安装解压指令bzip2
yum install bzip2
3. 运行脚本(一路输入yes)
sh Anaconda2-5.0.1-Linux-x86_64.sh
4. 更新anaconda
conda update anaconda
5. 安装jupyter
conda install jupyter
6. 创建登录密码
root@localhost ~]# ipython Python 3.5.2 (default, Aug 4 2017, 02:13:48) Type 'copyright', 'credits' or 'license' for more information IPython 6.1.0 -- An enhanced Interactive Python. Type '"htmlcode">if 0: # Enable to support locale aware default string encodings. import locale loc = locale.getdefaultlocale() if loc[1]: encoding = loc[1] #将上述代码段中if后面的0改成1,保存,重新启动anaconda。8. 修改配置文件:
vi ~/.jupyter/jupyter_notebook_config.py
添加以下内容:
c.NotebookApp.ip='*' c.NotebookApp.password = u'sha1:5311cd8b9da9:70dd3321fccb5b5d77e66080a5d3d943ab9752b4' #注意这里的密钥是刚刚生成的那个 c.NotebookApp.open_browser = False c.NotebookApp.port =8888 #随便指定一个端口,使用默认8888也可以9.保存镜像
docker commit 容器ID 镜像名称
10. 启动images提供服务:
docker run --privileged -d -p 8889:8888 -v /sys/fs/cgroup:/sys/fs/cgroup --name jupyter jupyter2:v2 /usr/sbin/init
注意:centos7有一个大坑,就是你在关闭防火墙的时候,systemctl 无法使用,报错: Failed to get D-Bus connection : Operation not permitted
所以要用init来起,在Dockerfile中可以用CMD来使运行时启动。
11. 进入docker image
docker exec -it jupyter /bin/bash
12.关闭防火墙
systemctl stop firewalls.service
13. 启动jupyter
jupyter notebook --notebook-dir=/root/ --allow-root
14.在浏览器输入服务器的IP+映射的端口号即可访问,完成~
以上这篇Docker镜像压缩与优化操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Docker,镜像压缩优化
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?