如下所示:
with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z3,z3] [tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]
输出结果
[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>, <tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>, <tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>], [<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>, <tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]] with tf.GradientTape(persistent=True) as tape: z1 = f(w1, w2 + 2.) z2 = f(w1, w2 + 5.) z3 = f(w1, w2 + 7.) z = [z1,z2,z3] tape.gradient(z, [w1, w2])
输出结果
[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,
<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]
总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。
补充知识:Python/Numpy 矩阵运算符号@
如下所示:
A = np.matrix('3 1; 8 2')
B = np.matrix('6 1; 7 9')
A@B matrix([[25, 12], [62, 26]])
以上这篇TensorFlow Autodiff自动微分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
内蒙古资源网 Copyright www.nmgbbs.com
暂无“TensorFlow Autodiff自动微分详解”评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。