Python 界有条不成文的准则: 计算密集型任务适合多进程,IO 密集型任务适合多线程。本篇来作个比较。
通常来说多线程相对于多进程有优势,因为创建一个进程开销比较大,然而因为在 python 中有 GIL 这把大锁的存在,导致执行计算密集型任务时多线程实际只能是单线程。而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的 GIL,互不干扰。
而在 IO 密集型任务中,CPU 时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间 GIL 会被释放,因而就可以使用真正的多线程。
以上是理论,下面做一个简单的模拟测试: 大量计算用 math.sin() + math.cos()
来代替,IO 密集型用 time.sleep()
来模拟。 在 Python 中有多种方式可以实现多进程和多线程,这里一并纳入看看是否有效率差异:
- 多进程: joblib.multiprocessing, multiprocessing.Pool, multiprocessing.apply_async, concurrent.futures.ProcessPoolExecutor
- 多线程: joblib.threading, threading.Thread, concurrent.futures.ThreadPoolExecutor
from multiprocessing import Pool from threading import Thread from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import time, os, math from joblib import Parallel, delayed, parallel_backend def f_IO(a): # IO 密集型 time.sleep(5) def f_compute(a): # 计算密集型 for _ in range(int(1e7)): math.sin(40) + math.cos(40) return def normal(sub_f): for i in range(6): sub_f(i) return def joblib_process(sub_f): with parallel_backend("multiprocessing", n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def joblib_thread(sub_f): with parallel_backend('threading', n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def mp(sub_f): with Pool(processes=6) as p: res = p.map(sub_f, list(range(6))) return def asy(sub_f): with Pool(processes=6) as p: result = [] for j in range(6): a = p.apply_async(sub_f, args=(j,)) result.append(a) res = [j.get() for j in result] def thread(sub_f): threads = [] for j in range(6): t = Thread(target=sub_f, args=(j,)) threads.append(t) t.start() for t in threads: t.join() def thread_pool(sub_f): with ThreadPoolExecutor(max_workers=6) as executor: res = [executor.submit(sub_f, j) for j in range(6)] def process_pool(sub_f): with ProcessPoolExecutor(max_workers=6) as executor: res = executor.map(sub_f, list(range(6))) def showtime(f, sub_f, name): start_time = time.time() f(sub_f) print("{} time: {:.4f}s".format(name, time.time() - start_time)) def main(sub_f): showtime(normal, sub_f, "normal") print() print("------ 多进程 ------") showtime(joblib_process, sub_f, "joblib multiprocess") showtime(mp, sub_f, "pool") showtime(asy, sub_f, "async") showtime(process_pool, sub_f, "process_pool") print() print("----- 多线程 -----") showtime(joblib_thread, sub_f, "joblib thread") showtime(thread, sub_f, "thread") showtime(thread_pool, sub_f, "thread_pool") if __name__ == "__main__": print("----- 计算密集型 -----") sub_f = f_compute main(sub_f) print() print("----- IO 密集型 -----") sub_f = f_IO main(sub_f)
结果:
----- 计算密集型 ----- normal time: 15.1212s ------ 多进程 ------ joblib multiprocess time: 8.2421s pool time: 8.5439s async time: 8.3229s process_pool time: 8.1722s ----- 多线程 ----- joblib thread time: 21.5191s thread time: 21.3865s thread_pool time: 22.5104s ----- IO 密集型 ----- normal time: 30.0305s ------ 多进程 ------ joblib multiprocess time: 5.0345s pool time: 5.0188s async time: 5.0256s process_pool time: 5.0263s ----- 多线程 ----- joblib thread time: 5.0142s thread time: 5.0055s thread_pool time: 5.0064s
上面每一方法都统一创建6个进程/线程,结果是计算密集型任务中速度:多进程 > 单进程/线程 > 多线程, IO 密集型任务速度: 多线程 > 多进程 > 单进程/线程。
以上就是Python 多进程、多线程效率比较的详细内容,更多关于Python 多进程、多线程的资料请关注其它相关文章!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。