1、建立仿真模型
(1)假设有一辆小车在一平面运动,起始坐标为[0,0],运动速度为1m/s,加速度为0.1 m / s 2 m/s^2 m/s2,则可以建立如下的状态方程:
Y = A "htmlcode">
""" Particle Filter localization sample author: Atsushi Sakai (@Atsushi_twi) """ import math import matplotlib.pyplot as plt import numpy as np from scipy.spatial.transform import Rotation as Rot DT = 0.1 # time tick [s] SIM_TIME = 50.0 # simulation time [s] MAX_RANGE = 20.0 # maximum observation range # Particle filter parameter NP = 100 # Number of Particle NTh = NP / 2.0 # Number of particle for re-sampling def calc_input(): v = 1.0 # [m/s] yaw_rate = 0.1 # [rad/s] u = np.array([[v, yaw_rate]]).T return u def motion_model(x, u): F = np.array([[1.0, 0, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, 0], [0, 0, 0, 0]]) B = np.array([[DT * math.cos(x[2, 0]), 0], [DT * math.sin(x[2, 0]), 0], [0.0, DT], [1.0, 0.0]]) x = F.dot(x) + B.dot(u) return x def main(): print(__file__ + " start!!") time = 0.0 # State Vector [x y yaw v]' x_true = np.zeros((4, 1)) x = [] y = [] while SIM_TIME >= time: time += DT u = calc_input() x_true = motion_model(x_true, u) x.append(x_true[0]) y.append(x_true[1]) plt.plot(x,y, "-b") if __name__ == '__main__': main()
运行结果:
2、生成观测数据
实际运用中,我们需要对小车的位置进行定位,假设坐标系上有4个观测点,在小车运动过程中,需要定时将小车距离这4个观测点的位置距离记录下来,这样,当小车下一次寻迹时就有了参考点;
def observation(x_true, xd, u, rf_id): x_true = motion_model(x_true, u) # add noise to gps x-y z = np.zeros((0, 3)) for i in range(len(rf_id[:, 0])): dx = x_true[0, 0] - rf_id[i, 0] dy = x_true[1, 0] - rf_id[i, 1] d = math.hypot(dx, dy) if d <= MAX_RANGE: dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]]) z = np.vstack((z, zi)) # add noise to input ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T xd = motion_model(xd, ud) return x_true, z, xd, ud
3、实现粒子滤波
# def gauss_likelihood(x, sigma): p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * math.exp(-x ** 2 / (2 * sigma ** 2)) return p def pf_localization(px, pw, z, u): """ Localization with Particle filter """ for ip in range(NP): x = np.array([px[:, ip]]).T w = pw[0, ip] # 预测输入 ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T x = motion_model(x, ud) # 计算权重 for i in range(len(z[:, 0])): dx = x[0, 0] - z[i, 1] dy = x[1, 0] - z[i, 2] pre_z = math.hypot(dx, dy) dz = pre_z - z[i, 0] w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0])) px[:, ip] = x[:, 0] pw[0, ip] = w pw = pw / pw.sum() # 归一化 x_est = px.dot(pw.T) p_est = calc_covariance(x_est, px, pw) #计算有效粒子数 N_eff = 1.0 / (pw.dot(pw.T))[0, 0] #重采样 if N_eff < NTh: px, pw = re_sampling(px, pw) return x_est, p_est, px, pw def re_sampling(px, pw): """ low variance re-sampling """ w_cum = np.cumsum(pw) base = np.arange(0.0, 1.0, 1 / NP) re_sample_id = base + np.random.uniform(0, 1 / NP) indexes = [] ind = 0 for ip in range(NP): while re_sample_id[ip] > w_cum[ind]: ind += 1 indexes.append(ind) px = px[:, indexes] pw = np.zeros((1, NP)) + 1.0 / NP # init weight return px, pw
4、完整源码
该代码来源于https://github.com/AtsushiSakai/PythonRobotics
""" Particle Filter localization sample author: Atsushi Sakai (@Atsushi_twi) """ import math import matplotlib.pyplot as plt import numpy as np from scipy.spatial.transform import Rotation as Rot # Estimation parameter of PF Q = np.diag([0.2]) ** 2 # range error R = np.diag([2.0, np.deg2rad(40.0)]) ** 2 # input error # Simulation parameter Q_sim = np.diag([0.2]) ** 2 R_sim = np.diag([1.0, np.deg2rad(30.0)]) ** 2 DT = 0.1 # time tick [s] SIM_TIME = 50.0 # simulation time [s] MAX_RANGE = 20.0 # maximum observation range # Particle filter parameter NP = 100 # Number of Particle NTh = NP / 2.0 # Number of particle for re-sampling show_animation = True def calc_input(): v = 1.0 # [m/s] yaw_rate = 0.1 # [rad/s] u = np.array([[v, yaw_rate]]).T return u def observation(x_true, xd, u, rf_id): x_true = motion_model(x_true, u) # add noise to gps x-y z = np.zeros((0, 3)) for i in range(len(rf_id[:, 0])): dx = x_true[0, 0] - rf_id[i, 0] dy = x_true[1, 0] - rf_id[i, 1] d = math.hypot(dx, dy) if d <= MAX_RANGE: dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]]) z = np.vstack((z, zi)) # add noise to input ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T xd = motion_model(xd, ud) return x_true, z, xd, ud def motion_model(x, u): F = np.array([[1.0, 0, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, 0], [0, 0, 0, 0]]) B = np.array([[DT * math.cos(x[2, 0]), 0], [DT * math.sin(x[2, 0]), 0], [0.0, DT], [1.0, 0.0]]) x = F.dot(x) + B.dot(u) return x def gauss_likelihood(x, sigma): p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * math.exp(-x ** 2 / (2 * sigma ** 2)) return p def calc_covariance(x_est, px, pw): """ calculate covariance matrix see ipynb doc """ cov = np.zeros((3, 3)) n_particle = px.shape[1] for i in range(n_particle): dx = (px[:, i:i + 1] - x_est)[0:3] cov += pw[0, i] * dx @ dx.T cov *= 1.0 / (1.0 - pw @ pw.T) return cov def pf_localization(px, pw, z, u): """ Localization with Particle filter """ for ip in range(NP): x = np.array([px[:, ip]]).T w = pw[0, ip] # Predict with random input sampling ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T x = motion_model(x, ud) # Calc Importance Weight for i in range(len(z[:, 0])): dx = x[0, 0] - z[i, 1] dy = x[1, 0] - z[i, 2] pre_z = math.hypot(dx, dy) dz = pre_z - z[i, 0] w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0])) px[:, ip] = x[:, 0] pw[0, ip] = w pw = pw / pw.sum() # normalize x_est = px.dot(pw.T) p_est = calc_covariance(x_est, px, pw) N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number if N_eff < NTh: px, pw = re_sampling(px, pw) return x_est, p_est, px, pw def re_sampling(px, pw): """ low variance re-sampling """ w_cum = np.cumsum(pw) base = np.arange(0.0, 1.0, 1 / NP) re_sample_id = base + np.random.uniform(0, 1 / NP) indexes = [] ind = 0 for ip in range(NP): while re_sample_id[ip] > w_cum[ind]: ind += 1 indexes.append(ind) px = px[:, indexes] pw = np.zeros((1, NP)) + 1.0 / NP # init weight return px, pw def plot_covariance_ellipse(x_est, p_est): # pragma: no cover p_xy = p_est[0:2, 0:2] eig_val, eig_vec = np.linalg.eig(p_xy) if eig_val[0] >= eig_val[1]: big_ind = 0 small_ind = 1 else: big_ind = 1 small_ind = 0 t = np.arange(0, 2 * math.pi + 0.1, 0.1) # eig_val[big_ind] or eiq_val[small_ind] were occasionally negative # numbers extremely close to 0 (~10^-20), catch these cases and set the # respective variable to 0 try: a = math.sqrt(eig_val[big_ind]) except ValueError: a = 0 try: b = math.sqrt(eig_val[small_ind]) except ValueError: b = 0 x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind]) rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2] fx = rot.dot(np.array([[x, y]])) px = np.array(fx[0, :] + x_est[0, 0]).flatten() py = np.array(fx[1, :] + x_est[1, 0]).flatten() plt.plot(px, py, "--r") def main(): print(__file__ + " start!!") time = 0.0 # RF_ID positions [x, y] rf_id = np.array([[10.0, 0.0], [10.0, 10.0], [0.0, 15.0], [-5.0, 20.0]]) # State Vector [x y yaw v]' x_est = np.zeros((4, 1)) x_true = np.zeros((4, 1)) px = np.zeros((4, NP)) # Particle store pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight x_dr = np.zeros((4, 1)) # Dead reckoning # history h_x_est = x_est h_x_true = x_true h_x_dr = x_true while SIM_TIME >= time: time += DT u = calc_input() x_true, z, x_dr, ud = observation(x_true, x_dr, u, rf_id) x_est, PEst, px, pw = pf_localization(px, pw, z, ud) # store data history h_x_est = np.hstack((h_x_est, x_est)) h_x_dr = np.hstack((h_x_dr, x_dr)) h_x_true = np.hstack((h_x_true, x_true)) if show_animation: plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) for i in range(len(z[:, 0])): plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k") plt.plot(rf_id[:, 0], rf_id[:, 1], "*k") plt.plot(px[0, :], px[1, :], ".r") plt.plot(np.array(h_x_true[0, :]).flatten(), np.array(h_x_true[1, :]).flatten(), "-b") plt.plot(np.array(h_x_dr[0, :]).flatten(), np.array(h_x_dr[1, :]).flatten(), "-k") plt.plot(np.array(h_x_est[0, :]).flatten(), np.array(h_x_est[1, :]).flatten(), "-r") plot_covariance_ellipse(x_est, PEst) plt.axis("equal") plt.grid(True) plt.pause(0.001) if __name__ == '__main__': main()
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
内蒙古资源网 Copyright www.nmgbbs.com
暂无“基于Python实现粒子滤波效果”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?