使用Python绘制正态分布曲线,借助matplotlib绘图工具;
#-*-coding:utf-8-*- """ python绘制标准正态分布曲线 """ # ============================================================== import numpy as np import math import matplotlib.pyplot as plt def gd(x, mu=0, sigma=1): """根据公式,由自变量x计算因变量的值 Argument: x: array 输入数据(自变量) mu: float 均值 sigma: float 方差 """ left = 1 / (np.sqrt(2 * math.pi) * np.sqrt(sigma)) right = np.exp(-(x - mu)**2 / (2 * sigma)) return left * right if __name__ == '__main__': # 自变量 x = np.arange(-4, 5, 0.1) # 因变量(不同均值或方差) y_1 = gd(x, 0, 0.2) y_2 = gd(x, 0, 1.0) y_3 = gd(x, 0, 5.0) y_4 = gd(x, -2, 0.5) # 绘图 plt.plot(x, y_1, color='green') plt.plot(x, y_2, color='blue') plt.plot(x, y_3, color='yellow') plt.plot(x, y_4, color='red') # 设置坐标系 plt.xlim(-5.0, 5.0) plt.ylim(-0.2, 1) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data', 0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) plt.legend(labels=['$\mu = 0, \sigma^2=0.2$', '$\mu = 0, \sigma^2=1.0$', '$\mu = 0, \sigma^2=5.0$', '$\mu = -2, \sigma^2=0.5$']) plt.show()
以上就是利用python绘制正态分布曲线的详细内容,更多关于python 正态分布的资料请关注其它相关文章!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
内蒙古资源网 Copyright www.nmgbbs.com
暂无“利用python绘制正态分布曲线”评论...